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The axisymmetric streaming Stokes flow past a body which contains a surface 
concave to the fluid is considered for the simplest geometry, namely, a spherical 
cap. It is found that a vortex ring is attached to the concave surface of the cap 
regardless of whether the oncoming flow is positive or negative. A stream surface 
@ = 0 divides the vortex from the mainstream flow, and a detailed description of 
the flow is given for the hemispherical cup. The local velocity and stress in the 
vicinity of the rim are expressed in terms of local co-ordinates. 

1. Introduction 
The steady streaming Stokes flow of an incompressible viscous fluid past a 

fixed body is a problem which has been investigated by many authors during the 
past century. Stokes (see Lamb 1945) first gave the solution for an isolated sphere 
and later Oberbeck (1876) obtained the solution for the general ellipsoid. In  1960 
Payne & Pell used the methods of generalized axially symmetric potential theory 
to calculate the flow past a class of axisymmetric bodies, including the lens, 
ellipsoid of revolution, spindle, and two separated spheres. More recently authors 
have been concerned with flow past slender bodies (see Cox 1970; Batchelor 
1970). In  most of these investigations the main result of physical interest is the 
drag formula for the particular obstacle under consideration. Apart from for the 
sphere, a detailed description of the streamlines has not been considered of prime 
interest even though explicit forms for the velocity field have been available. I f  
the body is everywhere convex to the fluid it is fairly easy to visualize the stream- 
lines. However, if the body is only partly convex and has a concave or re-entry 
region, e.g. the limagon r = I + e cos O,+ < e < 1, it  is not clear whether the flow is 
separated by a stream surface @ = 0 or whether the fluid particles flow in and out 
of such a region, so that upstream fluid particles eventually reach downstream 
infinity. To discuss this problem in general is a difficult task because even when 
explicit solutions are available for concave regions, e.g. the lens (Payne & Pell 
1960), the velocity fields are of such a complicated functional form that con- 
siderable numerical work would be necessary to extract any useful information. 
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The present paper describes the streaming flow past the simplest fixed geometry 
possessing a concave region: the spherical cap (umbrella or parachute shape). 
The spherical cap is a particular case of the lens configuration in which both 
surfaces coincide and also contains the sphere and a thin circular disk as special 
limiting cases. Apart from possible applications in physiology (deformed red 
blood cells) and chemical engineering the cap has a mathematical interest because 
of its role in the theory of mixed boundary-value problems (Sneddon 1966). The 
problem of streaming Stokes flow was first discussed as a limiting form of the lens 
by Payne & Pel1 (1960) and later by Collins (1963) using a method of dual series 
equations. The method employed in this paper uses an integral transformation 
technique described in Ranger (1972) and Shail(l973) and it is possible to deter- 
mine the stream function in a closed form, so that a fairly complete description 
of the flow is possible. 

The velocity is continuous everywhere in the fluid region but the vorticity and 
pressure have singularities like the inverse square root of distance from the rim 
of the cap. In  fact, in the solution presented here a unique solution is obtained by 
the requirement of zero velocity as the rim is approached. I n  Collins’s solution 
uniqueness is achieved by minimizing the singularity in the pressure at the rim 
of the cap and the limiting value of the velocity is not considered. However, both 
methods lead to the same expression for the drag coefficient as a function of the 
cap angle. The advantages of the method of complementary integral representa- 
tions employed here for the solution of the mixed boundary-value problem has 
been explained by Shail (1973) and it is worth pointing out that it is possible to 
discuss the flow in the neighbourhood of the rim without summing the series for 
the stream function. It would be necessary to sum the series for the stream func- 
tion in the Collins paper to determine local expansions about the rim. However, 
it  is routine procedure to determine the stream function in an elementary but 
cumbersome form and this has been carried out in the present paper so that 
streamlines can be plotted for the hemispherical cap. 

I f  ( r ,  0) denote spherical co-ordinates and the cap is defined by r = 1, 
0 < 6 < a, 0 < a < n-, it  is found that when a > 0 a stream surface $ = 0 forms 
in the fluid and is bounded by the rim of the cap. There is a stagnation ring inside 
this surface bounded by the cap, so that an axially symmetric vortex ring forms 
in which the fluid circulates about the stagnation ring. Since the flow is reversible 
the vortex will form in the fore or aft region of the flow depending on whether the 
concave or convex surface faces the oncoming stream. E’or all values of a, 
0 < a < n, there is only one vortex inside the cap and there is no possibility of 
vortices with equal and opposite circulations occurring as the angle a approaches 
n. Detailed numerical calculations are given for the calotte or hemispherical cup 
a = in, and in particular it is found that the stagnation ring lies on the plane 
containing the rim of the cup. The direction in which the stream surface y? = 0 
leaves the rim is found for general values of a and the local velocity and stresses 
are calculated in a neighbourhood of the rim. It is found that in this vicinity the 
local flow, as expected, is two-dimensional and it appears that similar results can 
be found for a lens configuration containing a concave face, using the results of 
Moffatt (1964). However a detailed description of this flow is not considered here. 
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2. The method of complementary integral representations 

fluid are 

where q is the fluid velocity and p the fluid pressure. In  axisymmetric flow the 
fluid velocity can be prescribed in terms of a stream function $(r, 8) by 

The non-dimensional Stokes-flow equations for an incompressible viscous 

gradp = V2q, divq = 0, (3.1) 

(3.2) 

where (r,8) are spherical co-ordinates and $ is the unit vector perpendicular to 
the azimuthal plane # = constant and in the sense of 4 increasing. The radial and 
angular components of the fluid velocity are 

and $(r,  8) satisfies the repeated Stokes operator equation 

(3.3) 

The flow to be considered is the axisymmetric streaming motion past a fixed 
spherical cap described by r = 1, 0 < 8 < a (0 < a Q n; see figure I), and the 
boundary conditions are 

The fluid velocity is to be continuous everywhere. In  particular, continuity of q 
at  the rim of the cap ( r  = 1,8 = a)  is required to provide a unique solution to the 
problem. 

An appropriate representation for the stream function is 
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where q ( r ,  0) and G(r,  8) both satisfy the Stokes equation LF1(?) = 0,  j = 1,2.  
Since 

(2.8) 1 $(1,8) = &sin20-V,(1,8), 

a@(l ,e) /ar= sin28-2%(1,8), 

the zero-velocity conditions become 

As r+co, & = o(r-l). 
5(1,8) = &sin2@, 0 < 8 Q a. (2.9) 

A representation of the 5 in terms of complementary integrals is provided by 

T$(r,8) = 

d h ,  
uj(r,  A )  sin h s 0 ( cos 8 - cos A)* 

vj(r, A)  sin h 
d h  = - r t  

0 (cos h - cos 8)t  r 6 1, 

r >  1. 

(2.10) 

The functions (uj, wj), j = 1, 2 ,  are conjugate two-dimensional harmonics even 
and odd in h respectively and subject to the restrictions vj(r, 0)  = uj(r, n) = 0 for 
convergence. They are expressible in the form 

(2.11) 

where the coefficients A t )  are real. Under the transforms given in (2.10), (ui, vj) 
map into 

c A~)r~+l{P,_,(cos8)-Pn,,(cos8)}, r < I ,  ( 2 . 1 2 ~ )  

2 A$ r-,{~,_,(cos8)-P,,,(cos8)), r > 1, (2.12b) 

n=l 

m 

n=l 

5 ( r , 0 )  = 

where Pn(cos 8) is the Legendre polynomial of degree n. 
Setting r = 1 in (2.10), the boundary conditions on the cap (2.9) require 

(2.13) 

whose solution is 
vj(1,h) = (23/3n)sin$h, o < h < a. (2.14) 

On the part of the sphere r = 1 not occupied by the cap, the velocity and stress 
components are continuous and thus $, a $ p ,  a2$lar2 and a3$/ar3 are continuous 
on T = 1, a < 6' Q n. From (2.8) the first two conditions are satisfied because the 
& are continuous on r = 1. The third condition is satisfied if 

sin h 
d h  = 0,  r = 1, a < 0 6 n, (2.15) 

or equivalently 
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The condition that a3$/ar3 be continuous reduces to 

(2.17) 

From (2.16), equation (2.17) can be expressed in terms of the derivatives of vl as 

a%,/ah3+av1/ah = 0, r = 1, < h Q 7 ~ .  (2.18) 

The general solutions for the wj( 1, A)  are then of the form 

u < h < 7 r ,  (2.19) 

where B, C, D and E are constants to be determined. In  order that qr be finite as 
8 + 7r, r = 1, it  is necessary that av,/ah + 0 as h -+ 7r, r = I .  This implies that E = 0. 

Expressions for T$( 1,8) valid in the range a < 8 < 7r can now be obtained by 
setting r = 1 in (2.10) and substituting for v j ( l , h )  from (2.14) and (2.19). The 
results are 

I vl(l,h) = C+Dcosh+Esinh, 

v,(l ,h) = B+$Dcosh+$Esinh, 

dh 
a v,(l,h)sinh vl( 1, A )  sin h s 0 (cos h - cos 8)* ( cos h-cos8)4 v,(l,@ = 

1 (2.20) 

2+ 
2C+2Dcosa:+-(5sin3&a-3sin$a) (cosa-cos8)*, a < 8 < 7r, 

37r 

(2 + [:sin +a - D (cos a- cos O)% V,( I,  8)  = - sin2 8 sin-1 2 1 1 
7l 

1 (2.21) 
(5sin3&a-3sin&a) (cosa:-cos8)*, a: < 8 6 7r. 

Now from (2.12), F(1,n) = 0 , j  = 1,2.  Also 

(2.22) 

so in order that qr be finite a t  the rim of the cap i t  is necessary that the singularity 
in dK(  I ,  @/dB as 8 +a + be eliminated. These conditions yield three equations 
for the determination of B, C and D which when solved give 

B = (23/247r) (9 sin *a + 2 sin3 &a), 
C = (2*/67r) (3 sin $a + 2 sin3 +a:), 

D = (2*/27r) (3  sin +a). 
(2.23) 

Thus from (2.14) and (2.19) the functions v j ( l , h )  have been determined 
explicitly . 

Taking the imaginary part of (2.11) and setting r = 1 gives 

29 * 
wj(l,h) = - A$)sin(n+$)h. 

n=l 
(2.24) 
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But this is simply a Fourier series representation of vi( 1, A),  so that the coefficients 
A:’ are given by 

(2 .25)  vj( 1’ A)  sin (n -I- * ) A  dh .  

Substituting for vi( 1, A)  and integrating yields the coefficients explicitly: 

s in(n-I)a  s in(n+2)a - cos (n+ +) a 
n + 2  

A:) has the same form as A t )  with C replaced by B and D replaced by 2D. 
When n = 1, sin [(n - 1) a]/(n - 1) is interpreted as a. These expressions for A:’ 

can now be substituted back into (2.12) to give infinite series expansions for the 

The drag on the cap can be computed from a formula due to Payne 6t Pel1 
(1960). If  U is the physical speed of the stream a t  infinity and a is the radius of 

Jp-, 0). 

the cap. the drag is 
L I  v 

gk - 4r2 sin2 0 
P = 87rpvUa lim 

r--tm rsin28 

= - 127fpvUa(&4y’+A(,2’) 

= - Uupv(Gcc + 8 sin a 3- sin 2a), (3.27) 

where p and 11 are the density and kinematic viscosity respectively. This expres- 
sion agrees with Collins’s calculation (1963) and predicts the correct drag on the 
sphere a = n-. 

3. The flow near the rim of the cap 
The solution given in the previous section is similar to that of Collins (1963) in 

that it is expressed in the form of an infinite series. The method of complementary 
integral representations used to derive the present solution, however, requires no 
knowledge of dual series equations and is easily adapted to problems involving 
the spherical cap where no axial symmetry exists (see Ranger 1973). In  the next 
section it will be shown that the series in (2.12) can be summed explicitly to give 
the stream function in closed form, and although the same claim can be made for 
Collins’s solution, the summation is more easily achieved in the present case. The 
real value of this method becomes evident however when one attempts to 
describe the flow near the rim of the cap. Because the cap is a concave body it is 
not clear whether the fluid flows around the rim into the concavity or whether 
a dividing stream surface @ = 0 emanates from the rim and separates the fluid 
in the concavity from the external flow. In  order to describe the flow completely 
therefore, it  is necessary to understand the nature of the flow near the rim. Using 
Collins’s solution such a ‘rim analysis ’ would involve summing the series for the 
stream function explicitly and then expanding this function about the point 
r = 1’ 8 = a:  a task which would involve enormous algebraic calculation. With 
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FIGURE 2 

the present solution however, an asymptotic expression for the stream function 
near the rim is obtained without any algebraic hardship. 

Define a local co-ordinate system (7, s) a t  the rim in the following way: 

Y = I - € ,  0 = a+?. (3.1) 

Local polar co-ordinates are given by 

p eih = 7 + is, (3.2) 

where p 2 0, - n < h < 7 ~ .  The inner surface of the cap is described by h = n and 
the outer surface by h = -n (figure 2). 

I n  order to obtain an asymptotic expression for the stream function near the 
rim, asymptotic expressions for the 5 must be found. The relationship between 
?++ and the 6 in terms of local co-ordinates is, from (2.7), 

?++ = *( 1 - e)2sin2 (a + 7) - V, + ( B  - #e2 -t- 4c3) aq /as  + ( 2 ~  - s2) V,. (3.3) 

Now Moffatt (1964) has shown that, in a two-dimensional Stokes flow about 
a semi-infinite plate, the stream function near the edge of the plate will go as ph, 
where p is distance from the edge. The situation in the present problem is 
analogous and so the stream function near the rim must go as pQ, where p is 
defined in (3.2). The leading term in the expansion for $ is therefore denoted 

Since the ?++ expansion contains half-integral powers of p, it  follows from (3.3) 
that V, and V, must do likewise. Furthermore we see from (3.3) that the leading 
half-integral terms in the expansions of V, and V, are of order pg and pB respec- 
tively. Denote these terms by V,,% and G, 4. 

Recall that V, and V, satisfy the Stokes equation L-l(5) = 0. An easy calcula- 
tion reveals that, to first order, in the vicinity of the rim the Stokes operator is 
identical with the two-dimensional Laplacian operator. As a result the leading 
half-integral terms of V, and V, are harmonic functions of (p, A). We may therefore 
write 

by $4. 

V,, +(p, A) = fl(a) pt  cos $A + gl(a) pg sin $A, 

V,, &(p, A)  = f2(a)p4 cos &A + g2(a) p:' sin +A, 

(3.4 1 

(3.5) 

wherefi(a) and gi(a) are coefficients to be determined. 

surface. The result is 
Now let h = 7~ in (3.4). In  so doing we are evaluating K,% along the inner cap 

%, &P, = - 9,w PQ. (3.6) 
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FIGURE 3 

But K, +(p, T )  is the term of order p* in the expansion of V,( 1,6) along the inner cap 
surface near the rim. In  other words q, g(p, T )  is the p% term in V,( 1, a - p ) ,  which 
is known from (2.9). Clearly the expansion of 

X(1,a-p) = &sin2(a-p) (3.7) 
contains no terms of order pb, leading US to the conclusion that g,(a) 

Now set h = 0 in (3.4). Using the same argument as above i t  follows thatf,(a) 
is the coefficient of p% in the expansion of V,( 1, a +p),  which can be computed from 
(2.20). Similarly, from (2.9) and (2.21), g 2 ( a )  = 0 andf2(a) is the coefficient of p& 
in V,( 1, a + p). Carrying out the calculation it is found that 

0. 

1 (3.8) 
f l(a) = - (4/3n) (2 sin a)& C O S ~  +a, 

f2(a)  = - (277)-1(2sina)gsinacos4a. 

From (3.3), the relationship between $8 and (K,+, G,&) is 

$4 = - K, 8 + E aK, + 2 4 ,  g, (3.9) 
where e = p sin A. Substituting (3.4) and (3.5) into (3.9) and simplifying, we obtain 

$$p, A )  = 4+(2 sin a)+p+ c0s3 &Y c0s3 +A[& - tan &a tan &A]. (3. 10) 

The most significant feature of (3.10) is that it  predicts the existence of a 
dividing stream surface 4 = 0 for all cap angles 0 < 01 < T. This stream surface 
emanates from the rim of the cap and separates the external streaming flow 
($ > 0) from a sort of wake region within the cap’s concavity ($ < 0). The exact 
nature of this wake is discussed in $ 3  5 and 6. 

By setting $+ = 0 one can calculate the angle A, at which the stream surface 
leaves the rim. The result is 

tan +A, = Q cot +a. (3.11) 

An interesting consequence of this formula is that A,-+ T as a -+ 0. Thus when a is 
very small and the cap resembles a circular disk with slight spherical curvature, 
the wake is very thin and in fact vanishes in the limit (figure 3). This is consistent 
with Stokes flow past a circular disk, where no wake is present a t  all. 

The velocity components near the rim are obtained from (3.10) using the 
formulae 

(3.12) 

The fluid velocity goes like p* and therefore is finite at the rim. However the 
pressure, vorticity and stress are given in term of velocity derivatives and these 
quantities have square-root singularities a t  the rim. This is in agreement with 
Collins’s solution and is a consequence of the assumption that the cap has a 
sharp-edged rim with infinite curvature. 
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4. The stream function in closed form 
In  this section the functions y ( r ,  O ) ,  j = 1,2, are obtained in closed form by 

summing the series in (2.12a). This in turn permits the sheam function to be 
written in closed form using (2.7). Because the interesting features of the flow lie 
within r < 1, attention is restricted to this region. 

The first step in the procedure is to determine the generating function for the 
set of polynomials {Pm-l(x) -Pn+,(x)}, where Pn(x) is the Legendre polynomial of 
degree n. This can be done using the identity 

~ m - I ( x ) - ~ n + l ( x )  - (2n+ I)/:, Pn(x)dx,  (4.1) 

together with the generating function for the Legendre polynomials 

Carrying out the necessary manipulations on (4.2) yields t,he required generating 
function : 

m c t ~ + ~ { P n ~ l ( x ) - P n + l ( x ) }  = l+xt - ( l -2x t+t2)4  -2 t (x - t )  (1-2xt+t2)-4. (4.3) 
n = l  

The series for q ( r ,  0)  can be decomposed into five infinite series corresponding 
to the five terms in the expression for A;) [see (2.26)]: 

where A is some constant and m is some integer. The operations which convert 
(4.3) into a series of the form (4.5) are summarized by 

tn+m eb(n+m) rn+l eia(n+m) 

+ + (4.6) tn+l+ p+rn-l+ - 
n+m n+m n+m * 

We begin by multiplying (4.3) through by trn-2 and then integrating with 
respect to t. Let t = reia and then multiply through by r-m+l. By choosing the 
real or imaginary part of the resulting expression we obtain a series of the form 
(4.5) together with its sum. 

Each series &(r, O ) ,  k = 1, .. ., 5 ,  is summed in this manner and then the five of 
them are combined to give K ( r ,  0). The result is 
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R = (1 - 2r cos 0 eia + r2 e2 ezia):, 

P(s, k) and E(s, k) are incomplete elliptic integrals of the first and second kinds 
respectively, and C and D are constants defined in (2.23). 

Although the calculation is not included here, the accuracy of (4.7) may be 
verified by showing that this expression satisfies boundary conditions (2.9) and 
(2.20). Since has the same form as A:), G(r ,  8) can be obtained directly from 
V, by replacing the constant C by B and D by 20. When the expressions for V, and 
V, are substituted into (2.7) and simplified, we obtain the stream function 4 in 
closed form: 

$(r,  0) = - 1 - - r2 sin2 0 + R( gr2 eia - gr2 e-2ia - r3 cos 0 e-ia 1( :) 4n 

+ 3r cos 0 - r cos 0 e-ia - r-l cos 0) + (r3 - r )  R’( Qe-2ia - Qeia 

eia + R’ 
- cos + 

+ r cos 0e-ia- r-l cos 8) + ( r2 - 1) sin2 0 

R’ - cos 0 eia 
l+R-rcosOeia 

- (r5 - r3 )  sin2 0 + 2r2 sin2 01n [I + R - r cos Oeia] 

I - (3r - r-1) sin2 0 In [r eta - cos 0 + R] 

+2tCRe{~(r3-r)e-ti“Rf -e-*ia R}- 2:BRe{(r2-- I)e-:iaR} 
e-gia - e-+ia 

R 
(1 + r eia)2 

+ Q(r2 - i ) 2  (1 - cos 0) ePa R-l 

+ g(r2- 1 ) 2  cos 8 e4ia R( 1 + r eia)-2), (4.8) 

where r < 1 and 
R’ = (1 - 3r cos 8 eia + r2 ezia)B, 

R’ = aR/ar = (re2ia-cos0eia) R-l. 

Although this expression is rather long and cumbersome it consists of simple 
functions only. The incomplete elliptic integrals which were present in the 
expressions for the T$(r, 8) cancel out and do not enter the formula for $(r, 0). 

5.  The flow within the wake 
With the stream function expressed in closed form a more detailed description 

of the flow within the wake can be given. It is possible now to sketch the stream 
surfaces for any given a and this is done in the next section for the case of the 
hemispherical cup (a = in-). In  this section however, the magnitudes of the 
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- 0.86 
- 0.94 
- 0.99 

1.0 
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0.82 
0.64 
0.44 
0.22 
0.0 

- 0.22 
- 0.42 
- 0.60 
- 0.76 
- 0.89 

TABLE 3 

0.0 
0.0017 
0.0079 
0.0160 
0.0236 
0.0287 
0.0305 
0.0287 
0.0238 
0.0167 
0.0090 
0.0030 

velocities within the wake are examined by considering the fluid velocity along 
the axis of symmetry. 

The calculation of qDIE=o from the stream function (4.8) is routine although 
lengthy. When qz15=o is plotted against z ( - 1 6 z < I )  we find that the curve has 
the same general shape regardless of the value of a (figure 4). 

Since the flow a t  infinity is qzlm = - I ,  the region of positive fluid velocity 
xo < z < 1 verifies the existence of a wake within the cap’s concavity. A stagna- 
tion point exists a t  z = zo, where the dividing stream surface 4 = 0 intersects the 
axis. The axial velocity within the wake attains a maximum q, a t  z = z,. Of 
course zo, x, and q, are functions of a and in table 1 and figure 5 the variation of 
these quantities with 01. is illustrated. 

It is apparent that the fluid within the wake moves very slowly along the axis. 
Although exceedingly difficult to prove, it seems very likely that the curve of 
q, us. a has a maximum at a = Qn-. As a result the axial fluid velocity within the 
wake never exceeds 3 %  of the flow a t  infinity. This maximum velocity is 
attained at the origin when the cap is a hemispherical cup. 

In  figure 5 we see that zo and z, have a cosine-like dependence on a. The curve 
z = cos a gives the point where the plane determined by the rim of the cap inter- 
sects the axis. Thus the portion of the axis within the cap’s concavity is described 
by cos a < z < 1. When 01 < Qn both zo and zm lie outside the concavity, but, as 
a increases, z ,  is gradually overtaken by COE a. The hemispherical cup is unique 
in that its axial maximum occurs in the plane determined by the rim. 
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6. Stokes flow past a hemispherical cup 
One of the major results in Q 3 was that every spherical cap 0 < a < rr in Stokes 

flow exhibits a wake within its concavity. Then in $ 5  we saw that the fluid 
velocity has the same general behaviour along the axis of symmetry regardless of 
the value of a. These two facts suggest that the nature of the wake is similar for 
all caps and that a representative picture of the flow can be obtained by sketching 
the stream surfaces for a particular case. Therefore in this section a sketch of the 
flow past a hemispherical cup (a  = +n-) is made. 

It is already known from (3.11) and table 1 that in the case of the cup the 
stream surface @ = 0 leaves the rim a t  an angle of A, = 36.9' and intersects the 
axis of symmetry at zo = - 0.35. The axial fluid velocity within the wake attains 
a maximum of q, = 5137~ - + = 0.0305 at x, = 0. Further information is obtained 
when we calculate the fluid velocity in the plane 8 = in- determined by the rim 
of the cap. This is rather tedious work involving expression (4.8) but when the 
calculation is hished a very interesting result emerges. We find that 

qr(r, +z) 0, 

Equation (6.1) tells us that within the wake there is no flow along the plane 
8 = irr. The fluid moves perpendicular to this plane. Furthermore the expression 
for qo(r, irr) vanishes when r = ro = 0.687 and thus the flow has a stagnation ring 
at r = 0.687, 8 = in-. Since expression (6.2) is negative when r < ro and positive 
when r > ro, the fluid within the wake must execute a toroidal rotation about the 
stagnation ring. A sketch of the flow in the spherical region r < I is given in 
figure 6. 

The flow past a hemispherical cup is representative of the Stokes flow past a 
spherical cap of any angle 0 < a < rr. However it is not generally true that 
qr(r, a) E 0 or that the stagnation ring lies in the plane 8 = a determined by the 
rim. In the case of the hemispherical cup, therefore, the task of determining the 
position of the stagnation ring is made easy by result (6.1). When a =l= $ 7 ~  the task 
is considerably more difficult. 
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FIGURE 6 
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Appendix 
E'or the sake of completeness the stream function $(r, 8) is given in closed form 

for r > 1. It is apparent from (2.12 b)  that, if 3(~, 8) = F(r ,  8) when T < I, then 
K(ry 8) = rFi$((r-l, 8) when r > 1. Using (4.7) therefore, a closed-form expression 
for q ( r ,  0) when r > 1 is easily obtained and a similar one can be found for %(r, 0). 
When these two functions are combined in accordance with (2.7) the following 
expression results for $(r, e) ,  r > I: 

3a: a: sin28 
$(r,8) = &r2sin2e---rsin28+- ~ 4n 4;rr r 

R'(r3 - r )  (Qe-2ia - +cia + r--1 cos 0 e-ia - r cos 8) 
4n 

+ R( tr2 eia - fr2 e-2ia + r3 cos 8 - 3r cos 0 ecia + r cos 8 . -  

R' - cos 8 + r-l cos 0 e-ia + (r5 - r3) sin2 8 
eia - r cos 8 + R 
- 2r2 sin2 0 In [eia - r cos 8 + R] l + R '  

r -  cos 8 eia + R 
- (r2- 1) sin2 8 

[continued on next page] 
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where 
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+ (3r - r-1) sin28ln [r - cos 8eix + R] + 29CRe {4(r3 - r )  

x e-8ixRf-e-%xR}-28BRe{(r2- 1)e-ti.R) 
I 

e f i x  - e-+ix 
R 

(r  + eia)2 

R = (r2 - 3r cos 0 eia + eZia)&, 

R' = aR/& = ( r  - cos I9 eia) R-l. 
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